
XTools
XTools Reference Guide JavaScript Object Reference 1

GenericUI
The GenericUI framework makes coding a user interface with ScriptUI easier. It does this by:

• implementing all of that common Window-level code (creation, display, handling of
result values)

• automatically creating Process and Cancel buttons and their associated onClick
methods.

• standardizing the way UI components are initialized and later validated
• providing an automated mechanism for reading and storing values from the UI in .ini

files.

To better explain the framework, lets look at the UI created by the sample code presented later
in this section.

This window contains two panels. The upper panel is the notes or documentation panel. It's
intended to contain instructions for using the script. This helps in making the UI self-
documenting. The lower panel is the application panel. This contains the UI components
needed for a particular script.

The two buttons at the bottom are created automatically. Note that Process is used instead of
OK. It turns out that ScriptUI has special features that are enabled if there is a button called OK.
These features are not consistent between the CS and CS2 implementations. Naming the button
Process gets around this problem. The return codes from 'show' (0, 1, 2) are hidden, being
mapped to either a process or cancel method invocation.

There are three strings that the UI displays: the labels for the notes panel and the process and
cancel buttons. These can be changed using the notesTxt, processTxt, and properties.

For purposes of this framework, the values collected from the UI that are to be used for
processing are called Options. Options are typically simple values like strings and numbers.
Complex objects and arrays can also be stored in an options object, but it is best to represent
them as strings. The reason for this is that if the application can keep the values in the options

XTools
XTools Reference Guide JavaScript Object Reference 2

object simple, the framework can automatically load and store the options to .ini files. Option
objects are also referred to as ini objects.

Ini objects have a magic property called noUI. This will allow the framework to run without
actually show the user interface. At first this may seem contradictory or useless, but it turns out
to be very helpful. If noUI is set to true, the framework will run but instead of gathering the
option values from user interface, values are either specified manually in code and/or are read
from a .ini file as we can see in this bit of code:

ui.exec({ noUI: true}); // use values only from the ini file

var opts = { noUI:true, source: "/c/images/session-dawn", outf: "/c/temp"};
ui.exec(opts); // use values specified manually. These values override any
 // read from the .ini file.

One place that this is particularly useful is in the debugging of processing code. After the kinks
in the user interface are worked out and some reasonable values are in the .ini file, the 'noUI:
true' setting can be added in the code or in the .ini file. The script can then be executed
repeatedly without the UI popping up during the writing and/or debugging of the processing
code. Another use of this would be to aid in automatic testing of scripts.

From a programming point of view, to use the framework a script must write a UI class that:
• provides appropriate values for the properties that GenericUI specifies (e.g.

documentation, winRect)
• implements the createPanel, validatePanel, and process methods

The sample script at the end of this section gets into the nuts and bolts of how to use this
framework.

In the following tables, methods and properties that should normally be overridden by an
application script's subclass of GenericUI are marked with a '*'.

Class Functions

Function Parameter Type Returns What it does
getWidgetValue
 (widget)

ScriptUI component boolean,
number, or
string

Retrieves the value of a ScriptUI
component.

readIni string or File ini object Read options from an ini file and return
them as an object.

setWidgetValue
 (widget,
 value)

ScriptUI component
boolean, number,
or string

Set the value of a ScriptUI component.

XTools
XTools Reference Guide JavaScript Object Reference 3

Function Parameter Type Returns What it does
validate boolean or

ini object
Called as part of the Process
onClick handler. Returns:
1) ini object containing the gather
options if the UI is valid
2) true if there was a problem with
validation but keep the UI open
3) false if there was a problem with the
validation and the UI should be closed.
Calls the GenericUI.validatePanel
method.

writeIni
 (iniFile,
 ini)

string or File
ini object

ini object Writes the values in the ini object to an
ini file.

Properties

Property Value Type What it is
cancelTxt string The text in the Cancel button.
documentation* string Text that describes the script being run. Displayed

in the top panel of the script's UI. Setting this text to
'' or undefined will remove the nots panel.

hasBorder* boolean Whether or not to display a border around the
application panel. Default is true.

iniFile* string or File The name of the ini file used for this UI. If not
defined (default) no ini file is used. The use of
absolute paths is discouraged. Having this property
set to "~/myscript.ini" or
File(app.preferencesFolder + "/myscript.ini") will
likely result in the most portable code.

notesSize* number The height of the documentation panel in pixels.
Setting this value to 0 will remove the nots panel.

notesTxt string The text label for the documentation panel.
processTxt string The text in the Process button.
winRect* object

 numbers: x, y, w, h
This object defines the rectangle to use for the
script's UI.
Ex. {x: 100, y:100, x: 200, y: 125}

Methods

Method Parameter Type Returns What it does
cancel
 (doc)

Document Called when the UI has been closed
without processing taking place.

XTools
XTools Reference Guide JavaScript Object Reference 4

Method Parameter Type Returns What it does
createPanel*
 (pnl,
 ini)

Panel
ini object

Panel Called by
GenericUI.createWindow to allow
the script to populate the application
panel with required UI components.
The ini object contains the default
values for the UI components.

createWindow
 (ini,
 doc)

object
Document

Called by GenericUI.exec to create
the window and any needed panels.
The ini object contains the default
option values for the UI components.
The Document (optional) is the
document to be processed.

errorPrompt
 (str)

string boolean Called during validation if an input
error is encountered. Returns true if the
UI should remain open and false if it
should be closed.
The string is the error message that the
user will see.

exec
 (arg1,
 arg2)

ini object and/or
Document

Called by the application script. This
creates and launches the UI, and
subsequently the processing callback
to run the actual underlying script.

process*
 (opts,
 doc)

ini object
Document

Called by GenericUI.exec to
perform the actual application
processing for this script.

run
 (win)

Window ini object Called by GenericUI.exec to
display the UI and return the options
gather from it. undefined is returned if
the UI was canceled.

validatePanel* boolean or
ini object

Called by GenericUI.validate to
validate the UI components in the
application panel. Returns:
1) ini object containing the gather
options if the UI is valid
2) true if there was a problem with
validation but keep the UI open
3) false if there was a problem with the
validation and the UI should be closed.

Sample Script
From the file SampleUI.jsx, here is the description for this script:

Here is a sample usage of the GenericUI framework. The script prompts
for source and target folders. PSD files found in the source folder are
converted to B&W using a Lab conversion technique courtesy of some code
from Trevor Morris. As part of the conversion, the new files have a keyword
'B&W-Luminosity' added.

Files that are already grayscale or already have the 'B&W-Luminosity' keyword are
skipped. This is especially handy if the source and target

XTools
XTools Reference Guide JavaScript Object Reference 5

directories are the same.

SampleUI.jsx

Define a class for the options to be used by our script. This is not absolutley necessary. You can use a
plain object. However, using a class like this helps to document the intent of the code.

//
// This is the class that contains our options for this script
// The default values for this class are specified here
//
SampleUIOptions = function(obj) {
 var self = this;

 self.source = File("~").fsName; // the source folder
 self.target = File("~").fsName; // the target/destination folder

 // values in obj can override the values set above
 if (obj) {
 for (var idx in obj) {
 self[idx] = obj[idx];
 }
 }
};

Now, define a class for the script's user interface. By convention, a UI postfix is used in the name. This
class defines only properties needed for the framework. Others specific to the script could be added as
well.

//
// SampleUI is our UI class
//
SampleUI = function() {
 var self = this;

 self.title = "Sample UI"; // our window title
 self.notesSize = 75; // The height of our Notes panel
 self.winRect = { // the size of our window
 x: 200,
 y: 200,
 w: 420,
 h: 250
 };
 self.documentation =
 "This script converts color images (.psd files) found in the source " +
 "folder using a Lab conversion technique. The new files are also tagged " +
 "with a new keyword: 'B&W-Luminosity'. Existing grayscale files or " +
 "files already tagged are skipped.";

 self.iniFile = "~/Sample.ini"; // our ini file name
 self.hasBorder = true;

 self.processTxt = 'Convert'; // use Convert as name of the Process button
};

In order for the framework to function properly, we need to make our sample UI class a subclass of

XTools
XTools Reference Guide JavaScript Object Reference 6

GenericUI. A SampleUI is a "kind-of" GenericUI. When we do this, any objects we create of class
SampleUI not only have all of the propertiese that we've defined above, but they also have all of the
properties and methods defined for GenericUI. The syntax for doing this in JavaScript looks like:

// make it a subclass of GenericUI
SampleUI.prototype = new GenericUI();

The code for the target/output widgets has been removed as it is nearly identical to that used for the
source UI components.

// Here is where we create the components of our panel
SampleUI.prototype.createPanel = function(pnl, ini) {
 var xOfs = 10;
 var yy = 10;

 var opts = new SampleUIOptions(); // default values

 // for our panel, we have a source directory input
 var xx = xOfs;
 pnl.add('statictext', [xx,yy,xx+110,yy+20], 'Source Directory:');
 xx += 110;
 pnl.source = pnl.add('edittext', [xx,yy,xx+220,yy+20], opts.source);
 xx += 225;
 pnl.sourceBrowse = pnl.add('button', [xx,yy,xx+30,yy+20], '...');

 yy += 40;
 xx = xOfs;

 // target/output code removed....

At this point, any UI component callbacks have to be specified. In this example, we have the
sourceBrowse.onClick callback function specified inline. It's nice and convenient doing it this way.
However, there is a bug in PSCS2. In some cases, having mulitple inline callbacks will result in
Photoshop issuing an error when the script completes. That error results in a message that looks like:

Although the script may have executed correctly and completely, the Photoshop scripting facilities
become unstable and may fail unexpectedly either stopping Photoshop or requiring a shutdown/restart
cycle. If this happens, you need to move the inlined functions outside of the createPanel method. This
problem is not unique to GenericUI or ScriptUI but the way UI callbacks are sometimes written seems to
be the most effective way of provoking this bug.

 // now specify the callbacks for our controls

 pnl.sourceBrowse.onClick = function() {
 try {
 var pnl = this.parent;

XTools
XTools Reference Guide JavaScript Object Reference 7

 var def = (pnl.source.text ? new Folder(pnl.source.text) : undefined);
 var f = Folder.selectDialog("Select a Source folder", def);

 if (f) {
 pnl.source.text = decodeURI(f.fsName);
 if (!pnl.target.text) {
 pnl.target.text = pnl.source.text;
 }
 }
 } catch (e) {
 alert(e);
 }
 }

 // target/output code removed....

In order for the .ini file support to function correctly, the values in the ini object are used to populate
initial values in the appropriate UI components.

 if (ini) { // if we have an ini object

 if (ini.source) {
 pnl.source.text = ini.source; // get the source directory
 }
 if (ini.target) {
 pnl.target.text = ini.target; // get the target directory
 }
 }

To finish off the method, the panel that we just filled with UI components needs to be returned.

 return pnl; // return the panel object
};

Now that we have the user interface constructed. we need our validation function which will retrieve the
information that the user has set in the UI and put the contents into an options object. Any errors will
result in a boolean being returned that indicates whether or not the user wants to try again or just end this
script.

//
// code for validating our panel
//
SampleUI.prototype.validatePanel = function(pnl) {
 var self = this;

Define our options object

 var opts = new SampleUIOptions(); // our options object

 // A source directory must be specified and must exist
 var f;
 if (pnl.source.text) {
 f = new Folder(pnl.source.text);
 }

Check to see if the file was specified, and make sure it exists

XTools
XTools Reference Guide JavaScript Object Reference 8

 if (!f || !f.exists) {
 return self.errorPrompt("Source folder not found");
 }

Place the name of the file in the opts.source field.

 opts.source = f.fsName;

 // target/output code removed....

Reaching this point means that the all of the input data is present, validated, and ready for processing.

 // return our valid options (if we made it this far)
 return opts;
};

Now, it's time to write the Process method. The comments contained in the following code describe
prescisely what this method does.

//
// The process callback function retrieves all of the .psd file from the
// source directory. Those that are not already grayscale and do not have
// the "B&W-Luminosity" keyword are converted to grayscale using Trevor
// Morris' luminousityChannel function. The new copy of the document has
// the "B&W-Luminosity" added and is written to the target directory.
//
SampleUI.prototype.process = function(opts) {
 var folder = new Folder(opts.source);
 var files = folder.getFiles("*.psd"); // get the .psd files from 'source'
 var fileNameSuffix = 'Lab (Luminousity)';
 var psdSaveOptions = new PhotoshopSaveOptions(); // create the save options

 psdSaveOptions.embedColorProfile = true;
 psdSaveOptions.maximizeCompatibility = true;

 for (var i = 0; i < files.length; i++) { // for each file
 var file = files[i];
 var doc = app.open(file);
 var keywords = doc.info.keywords;

 // only do processing if the document is not grayscale already and
 // if it doesn't have 'B&W-Luminosity' as a keyword

 if (!/B&W-Luminosity/.test(keywords.toString()) &&
 doc.mode != DocumentMode.GRAYSCALE) {

 var name = doc.name.toString();
 var dupe = luminousityChannel();// convert to B&W a duplicate is returned

 var keywords = dupe.info.keywords; // add the "B&W-Luminosity" keyword
 keywords.push("B&W-Luminosity");
 dupe.info.keywords = keywords;

 // insert fileNameSuffix between the filename and the extension
 // ex: "file.psd" becomes "file - Lab (Luminousity).psd"

XTools
XTools Reference Guide JavaScript Object Reference 9

 var fname = name.replace(/(\.[^\.]+)$/, " - " + fileNameSuffix + "$1");
 var file = new File(opts.target + '/' + fname);

 // save and close the B&W document
 dupe.saveAs(file, psdSaveOptions, true, Extension.LOWERCASE);
 dupe.close(SaveOptions.DONOTSAVECHANGES);
 }

 // close the original document
 doc.close(SaveOptions.DONOTSAVECHANGES);
 }
};

With the Process method completed, we need to provide the luminosityChannel function taken from
Trevor's script. The primary change was to comment out his saveFile function call because we actually
do the save (plus a couple of other things) in our Process method.

//
// The following function was pulled from BWVariations_0-3-5.jsx and slightly
// modified for use in this script.
//
///
// create Lightness channel variation (L*a*b* mode)
//
// Author: Trevor Morris (tmorris@fundy.net)
// Author Website: http://user.fundy.net/morris/
// Version: 0.3.5
// Source File: http://user.fundy.net/morris/downloads/scripts/BWVariations_0-3-
5.jsx
//
///
function luminousityChannel() {
 // duplicate and flatten the original document
 var duplicateDocument = activeDocument.duplicate();
 duplicateDocument.flatten();

 // convert document to L*a*b* mode
 if (duplicateDocument.mode != DocumentMode.LAB) {
 duplicateDocument.changeMode(ChangeMode.LAB);
 }

 // remove a* and b* channels
 duplicateDocument.channels[2].remove();
 duplicateDocument.channels[1].remove();

 // convert document to grayscale
 duplicateDocument.changeMode(ChangeMode.GRAYSCALE);

 // Modification by xbytor:
 // the call to the function saveFile has been replaced by code
 // in the caller which mimics its behavior.

 // save output
 //var fileNameSuffix = 'Lab (Luminousity)';

 //saveFile(fileNameSuffix);

 return duplicateDocument;
};

XTools
XTools Reference Guide JavaScript Object Reference 10

In the case of this script, the Cancel method does nothing. But we'll add an alert to illustrate that no
matter how the window is closed without processing, we will be notified.

SampleUI.prototype.cancel = function() {
 alert("In Sample.cancel"); // all we do is alert
};

Now that all of the above has been done, we just need to run the script.

SampleUI.main = function() {
 var ui = new SampleUI(); // create a new UI object
 ui.exec(); // run the UI
};

SampleUI.main(); // call our 'main' routine

Advanced Topics
Some of the more advanced things you can do with this framework are listed below.

• Hardwired Options: in some cases we may want to option values that override those
that are read in from the ini file.

SampleUI.main = function() {
 var ui = new SampleUI(); // create a new UI object
 var opts = { source: "~/images };
 ui.exec(opts); // run the UI
};

// or, more succinctly

SampleUI.main = function() {
 var ui = new SampleUI(); // create a new UI object
 ui.exec({ source: "~/images" });

};

• Headless Mode is running a GenericUI script without an actual user interface opening.
In order for this to work, you must first run the script with the UI turned on so that the
ini file can be populated with the data that you are interested in. Then, you need to run it
again with the magic 'noUI' option set to true. This can be done by either manually
adding the line 'noUI: true' to the ini file or by manually setting the option in code like
this

SampleUI.main = function() {
 var ui = new SampleUI(); // create a new UI object
 ui.exec({ noUI: true });
};

If you change the ini file, the script will continue to run without a UI and with the same
options until the noUI line is removed from the ini file.

XTools
XTools Reference Guide JavaScript Object Reference 11

• Complex Objects as options are possible as we see below:

WatermarkOptions = function(obj) {
 var self = this;

 self.fontColor = "0,0,0";

 self.getFontColor = function() {
 var c = this.fontColor;
 if (!(c instanceof SolidColor)) {
 if (c.constructor == String) {
 c = c.split(',');
 }
 if (c instanceof Array) {
 var rgbc = new SolidColor();
 rgbc.rgb.red = c[0];
 rgbc.rgb.green = c[1];
 rgbc.rgb.blue = c[2];
 c = rgbc;
 } else {
 c = undefined;
 }
 }

 return c;
 }

 self.setFontColor = function(c) {
 this.fontColor = c.rgb.red + "," + c.rgb.green + "," + c.rgb.blue;
 }
};

The fontColor property is what is used for reading and writing with an ini file. The
get/setFontColor is what we use elsewhere in our script.

opts.setFontColor(app.foregroundColor);
//...
doc.activeLayer.textItem.color = opts.getFontColor();

It is also possible that Object.toSource() may offer a more general way of managing
complex objects as strings.

• Multipanel Interfaces. One of the original intents of the framework was to have the
ability to take a set of UI objects and use them to compose a larger multipanel user
interfaces. This technique, while theoretically possible, has not yet been proven in an
implementation.

